تصميم التمثيلات التعبيرية للكيانات والعلاقات في الرسم البياني المعرفي هو مسعى مهم. في حين أن العديد من الأساليب الحالية تركز بشكل أساسي على التعلم من الأنماط العلائقية والمعلومات الهيكلية، فقد تم تجاهل التعقيد الجوهري لكي كيانات KG أكثر أو أقل. بشكل أكثر ملاءمة، نفترض كيانات KG قد تكون أكثر تعقيدا مما نعتقد، أي، قد يرتدي الكيان العديد من القبعات والأحدث العلائقية قد تشكل بسبب أكثر من سبب واحد. تحقيقا لهذه الغاية، تقترح هذه الورقة التعلم من تمثيلات DESENTANGLED من كيانات كيغ كيغ - وهي طريقة جديدة تقوم بتخفيف الخصائص الكامنة الداخلية لكي كيانات كيغ كيانات. تعمل عملية DESTANGLED الخاصة بنا على مستوى الرسم البياني ويتم الاستفادة من آلية الحي لزيادة الخصائص المخفية لكل كيان. هذا النهج التعلم في التمثيل هذا هو نموذج غير مرجح ومتوافق مع نهج Enonical KG Adgedding. نقوم بإجراء تجارب مكثفة على العديد من مجموعات البيانات القياسية، تجهيز مجموعة متنوعة من النماذج (الإقصاء، بسيطة، والقلق) مع آلية DESTANGLING المقترحة. توضح النتائج التجريبية أن نهجنا المقترح يحسن الأداء بشكل كبير على المقاييس الرئيسية.