غالبا ما يتطلب تحسين تجربة المستخدم لنظام الحوار جهدا مكثفا مطورا مكثفا لقراءة سجلات المحادثة، وتشغيل التحليلات الإحصائية، والأهمية النسبية لأوجه القصور النسبية.تقدم هذه الورقة نهجا جديدا للتحليل الآلي لسجلات المحادثة التي تتعلم العلاقة بين تفاعلات نظام المستخدم وجودة الحوار الشاملة.على عكس العمل السابق على التنبؤ بجودة الكلام على مستوى الكلام، يتعلم نهجنا تأثير كل تفاعل من تصنيف المستخدمين العام دون إشراف على مستوى الكلام، مما يسمح باستنتاجات النماذج الناتجة عن الاستمتاع على أساس الأدلة التجريبية وتكلفة منخفضة.يحدد نموذجنا التفاعلات التي لها علاقة قوية بجودة الحوار الشاملة في إعداد chatbot.تشير التجارب إلى أن التحليل الآلي من طرازنا يوافق على أحكام الخبراء، مما يجعل هذا العمل الأول من يوضح أن هذا التعلم الإشرافه ضعيف في التنبؤ بجودة الكلام هو قابلة للتحقيق بشدة.