يمثل تحديا كبيرا في تحليل بيانات Me-Dia الاجتماعية التي تنتمي إلى لغات تستخدم البرنامج النصي غير الإنجليزي هو طبيعتها المختلطة من التعليمات البرمجية.قدمت أثر الحدث الذي أحدث طرازات تضمين حديثة تضمين تضمين الحديث (كل من أحادي الأحادي S.A.bert و Multilingal S.A.XLM-R) كهدوث نهج FOROMISP.في هذه الورقة، نوضح أداء هذا التضمين وزارة الدفاع إلى العوامل المتعددة، مثل الخلاط الشامل من الشفرة في DataSet، وكلفة بيانات التدريب.نحن منظمات تجريبية أن كبسولة مقدمة تقدمت حديثا يمكن أن تتفوق على مصنف مصنوع على Bertned English-Bert بالإضافة إلى مجموعة بيانات تدريب XLM-R فقط من حوالي 6500 عينة لبيانات Sinhala-English المزاجية للبيانات المختلطة.