يلتقط التفضيلات التجريبية (SP) إلى ميل كلمة لإجراء كلمات أخرى بشكل صحيح لتكون في العلاقة النحوية المباشرة معها، وبالتالي تبلغنا عن تكوينات الكلمات الأساسية التي هي ذات معنى. لذلك SP هو مورد قيمة لأنظمة معالجة اللغة الطبيعية (NLP) ولتكل الأسلاك. تعتبر التعلم SP عموما بمثابة مهمة خاضعة للإشراف، لأنها تتطلب جثة محاطة كمصدر لأزواج الكلمات ذات الصلة بمجرد. في هذه الورقة نظهر أن التحليل التوزيعي البسيط يمكن أن يتعلم كمية جيدة من SP دون الحاجة إلى كائن مشروح. نحن نقوم بتوسيع تقنية تضمين الكلمة العامة مع ويندوز سياق كلمة الاتجاهات لإعطاء تمثيلات الكلمات التي تلتقط العلاقات التجميعية بشكل أفضل. نقوم باختبار مجموعة بيانات SP-10K وإظهار أن تضمين التضمين الجزيئي تتفوق على الأدوات النموذجية. نقوم أيضا بتقييم النسخة الخاضعة للإشراف من هذه المدينات وإظهار أن المدينات التجميعية غير الخاضعة للكشف يمكن أن تكون جيدة مثل المضبوطات الخاضعة للإشراف. نحن نوفر أيضا شفرة المصدر لتنفيذنا.