تحليل المعففات المستندة إلى جانب الجسيم والاعتراف كيان اسم المغني باستخدام التعلم بناء على شبكة توليد المعلمة


الملخص بالعربية

عندما نهم مهتمين في مجال معين، يمكننا جمع وتحليل البيانات من الإنترنت.لا يتم تصميم البيانات التي تم جمعها حديثا، لذلك من المأمول استخدام البيانات المسمى مفيدة للبيانات الجديدة.نقوم بإجراء التعرف على كيان الاسم (NER) وتحليل المعرفات المستندة إلى جانب الجسيم (ABASA) في التعلم متعدد المهام، والجمع بين شبكة توليد المعلمة والهندسة المعمارية Dann لبناء النموذج.في مهمة NER، يتم تصنيف البيانات مع التعادل والكسر، ويتم ضبط وزن المهمة وفقا لمعدل تغيير الخسارة في كل مهمة باستخدام متوسط الوزن الديناميكي (DWA).استخدمت هذه الدراسة مجموعات بيانات مجال مصدر مختلفة.تظهر النتائج التجريبية أن التعادل، استراحة يمكن أن تحسن نتائج النموذج؛يمكن أن يكون DWA أداء أفضل في النتائج؛يمكن استخدام مزيج شبكة توليد المعلمة وطبقة انعكاس التدرج لكل تعلم جيد في مجال مختلف.

المراجع المستخدمة

https://aclanthology.org/

تحميل البحث