نقترح سلسلة من النماذج العصبية التي تنفذ تصنيف الجملة، والاعتراف العبارة، واستخراج ثلاثي لإجراء المساهمات العلمية تلقائيا من منشورات NLP. لتحديد أحكام المساهمة الأكثر أهمية في ورقة، استخدمنا مصنف مقرا له بالميزات الموضعية (SubTask 1). تم استخدام نموذج BERT-CRF للتعرف على العبارات ذات الصلة وتمييزها في جمل المساهمة (SubTask 2). قمنا بتصنيف ثلاث مرات إلى عدة أنواع بناء على ما إذا كانت عناصرها وكيف تم التعبير عن عناصرها في نص، ومعالجتها كل نوع باستخدام مصنفين منفصلين مقرهم بالمقيمين بالإضافة إلى القواعد (SubTask 3). تم تصنيف نظامنا رسميا في المرحلة الأولى في تقييم المرحلة الأولى وأول مرة في كلا جزأين التقييم المرحلة 2. بعد إصلاح خطأ التقديم في PHARESE 1، فإن نهجنا يؤدي إلى أفضل النتائج بشكل عام. في هذه الورقة، بالإضافة إلى وصف للنظام، نقدم أيضا تحليلا إضافيا لنتائجنا، مما يسلط الضوء على نقاط القوة والقيود لها. نجعل شفرةنا متوفرة علنا في https://github.com/liu-hy/nlp-contrib-graph.