في هذه الورقة مقارنة أداء ثلاث نماذج: SGNS (أخذ العينات السلبية Skip-Gram) والإصدارات المعززة من SVD (تحلل القيمة المفرد) و PPMI (معلومات متبادلة إيجابية) على مهمة تشابه كلمة.نحن نركز بشكل خاص على دور ضبط فرط التشعيم من أجل الهندية القائمة على التوصيات المقدمة في العمل السابق (على اللغة الإنجليزية).تظهر نتائجنا أن هناك تفضيلات محددة للغة لهذه الفرط.نحن نقدم أفضل إعدادات للهيكلية إلى مجموعة من اللغات ذات العلاقة: البنجابية، الغوجاراتية والمريثي مع نتائج مواتية.نجد أيضا أن نموذج SVD يتم ضبطه بشكل مناسب يتفوق على SGNS لمعظم لغاتنا وهو أيضا أكثر قوة في إعداد الموارد المنخفضة.