كشف العاطفة مهمة مهمة يمكن تطبيقها على بيانات وسائل التواصل الاجتماعي لاكتشاف المعرفة الجديدة.في حين أن استخدام طرق التعلم العميق لهذه المهمة كان سائدا، فهي نماذج من الصندوق الأسود، مما يجعل قراراتها بجد لتفسير مشغل بشري.لذلك، في هذه الورقة، نقترح نهجا باستخدام Kevent Kearbors المرجح (KNN)، وهو نموذج تعليمي بسيط وسهل تنفيذي وشرحه.هذه الصفات يمكن أن تساعد في تعزيز موثوقية النتائج وتحليل الأخطاء التوجيه.على وجه الخصوص، نطبق نموذج KNN المرجح بمهمة الكشف عن العاطفة المشتركة في تغريدات Semeval-2018.يتم تمثيل التغريدات باستخدام أساليب مختلفة لتضمين نصية وعشرات المفردات المعجمية العاطفة، ويتم التصنيف من قبل مجموعة من نماذج KNN المرجحة.تتمتع أفضل أساليبنا بنتائج تنافسية مع حلول حديثة وفتح مسارا بديلا واعدا لأساليب الشبكة العصبية.