التعلم النقيض من أجل الترجمة الآلية المعالجة في السياق باستخدام معلومات Aquerence


الملخص بالعربية

تتضمن ترجمة الآلات العصبية السياق (NMT) معلومات سياقية من النصوص المحيطة بها، والتي يمكن أن تحسن جودة الترجمة من الترجمة الآلية على مستوى المستند. ركز العديد من الأعمال الموجودة على NMT على دراية السياق على تطوير هياكل نموذجية جديدة لإدماج سياقات إضافية وأظهرت بعض النتائج الواعدة. ومع ذلك، فإن معظم الأعمال الموجودة تعتمد على فقدان الانتروبيا، مما يؤدي إلى استخدام محدود من المعلومات السياقية. في هذه الورقة، نقترح CoreFCL، وتعزيز البيانات الجديدة ومخطط التعلم المتعاقلي على أساس COMERALE بين المصدر والجمل السياقية. من خلال التفسير الذي تم اكتشافه تلقائيا يذكر السلامة في الجملة السياقية، يمكن corefcl تدريب النموذج على أن تكون حساسة لتناقض الأساسية. جربنا من طريقنا على نماذج NMT Common Commany-Aware NMT ومهام ترجمة على مستوى المستند. في التجارب، تحسنت طريقتنا باستمرار بلو من النماذج المقارنة على المهام الإنجليزية والألمانية والكورية. نظهر أيضا أن طريقتنا تعمل بشكل كبير على تحسين دقة Aquerence في جناح الاختبار الإنجليزي والألماني.

المراجع المستخدمة

https://aclanthology.org/

تحميل البحث