Complete integrability of a modified vector derivative nonlinear Schroedinger equation


الملخص بالإنكليزية

Oblique propagation of magnetohydrodynamic waves in warm plasmas is described by a modified vector derivative nonlinear Schroedinger equation, if charge separation in Poissons equation and the displacement current in Amperes law are properly taken into account. This modified equation cannot be reduced to the standard derivative nonlinear Schroedinger equation and hence its possible integrability and related properties need to be established afresh. Indeed, the new equation is shown to be integrable by the existence of a bi--Hamiltonian structure, which yields the recursion operator needed to generate an infinite sequence of conserved densities. Some of these have been found explicitly by symbolic computations based on the symmetry properties of the new equation. Since the new equation includes as a special case the derivative nonlinear Schroedinger equation, the recursion operator for the latter one is now readily available.

تحميل البحث