We consider quantum error-correction codes for multimode bosonic systems, such as optical fields, that are affected by amplitude damping. Such a process is a generalization of an erasure channel. We demonstrate that the most accessible method of transforming optical systems with the help of passive linear networks has limited usefulness in preparing and manipulating such codes. These limitations stem directly from the recoverability condition for one-photon loss. We introduce a three-photon code protecting against the first order of amplitude damping, i.e. a single photon loss, and discuss its preparation using linear optics with single-photon sources and conditional detection. Quantum state and process tomography in the code subspace can be implemented using passive linear optics and photon counting. An experimental proof-of-principle demonstration of elements of the proposed quantum error correction scheme for a one-photon erasure lies well within present technological capabilites.