We study how decoherence rules the quantum-classical transition of the Kicked Harmonic Oscillator (KHO). When the amplitude of the kick is changed the system presents a classical dynamics that range from regular to a strong chaotic behavior. We show that for regular and mixed classical dynamics, and in the presence of noise, the distance between the classical and the quantum phase space distributions is proportional to a single parameter $chiequiv Khbar_{rm eff}^2/4D^{3/2}$ which relates the effective Planck constant $hbar_{rm eff}$, the kick amplitude $K$ and the diffusion constant $D$. This is valid when $chi < 1$, a case that is always attainable in the semiclassical regime independently of the value of the strength of noise given by $D$. Our results extend a recent study performed in the chaotic regime.