We study the peformances of Raman velocimetry applied to laser-cooled, spin-polarized, cesium atoms. Atoms are optically pumped into the F=4, m=0 ground-state Zeeman sublevel, which is insensitive to magnetic perturbations. High resolution Raman stimulated spectroscopy is shown to produce Fourier-limited lines, allowing, in realistic experimental conditions, atomic velocity selection to one-fiftieth of a recoil velocity.