A measurement process is constructed to project an arbitrary two-mode $N$-photon state to a maximally entangled $N$-photon state (the {it NOON}-state). The result of this projection measurement shows a typical interference fringe with an $N$-photon de Broglie wavelength. For an experimental demonstration, this measurement process is applied to a four-photon superposition state from two perpendicularly oriented type-I parametric down-conversion processes. Generalization to arbitrary $N$-photon states projection measurement can be easily made and may have wide applications in quantum information. As an example, we formulate it for precision phase measurement.