Stationary pulses of light in an atomic medium


الملخص بالإنكليزية

Physical processes that could facilitate coherent control of light propagation are now actively explored. In addition to fundamental interest, these efforts are stimulated by possibilities to develop, for example, a quantum memory for photonic states. At the same time, controlled localization and storage of photonic pulses may allow novel approaches to manipulate light via enhanced nonlinear optical processes. Recently, Electromagnetically Induced Transparency (EIT) was used to reduce the group velocity of propagating light pulses and to reversibly map propagating light pulses into stationary spin excitations in atomic media. Here we describe and experimentally demonstrate a novel technique in which light propagating in a medium of Rb atoms is converted into an excitation with localized, stationary electromagnetic energy, which can be held and released after a controllable interval. Our method creates pulses of light with stationary envelopes bound to an atomic spin coherence, raising new possibilities for photon state manipulation and non-linear optical processes at low light levels.

تحميل البحث