Quantum models related to fouled Hamiltonians of the harmonic oscillator


الملخص بالإنكليزية

We study a pair of canonoid (fouled) Hamiltonians of the harmonic oscillator which provide, at the classical level, the same equation of motion as the conventional Hamiltonian. These Hamiltonians, say $K_{1}$ and $K_{2}$, result to be explicitly time-dependent and can be expressed as a formal rotation of two cubic polynomial functions, $H_{1}$ and $H_{2}$, of the canonical variables (q,p). We investigate the role of these fouled Hamiltonians at the quantum level. Adopting a canonical quantization procedure, we construct some quantum models and analyze the related eigenvalue equations. One of these models is described by a Hamiltonian admitting infinite self-adjoint extensions, each of them has a discrete spectrum on the real line. A self-adjoint extension is fixed by choosing the spectral parameter $epsilon$ of the associated eigenvalue equation equal to zero. The spectral problem is discussed in the context of three different representations. For $epsilon =0$, the eigenvalue equation is exactly solved in all these representations, in which square-integrable solutions are explicity found. A set of constants of motion corresponding to these quantum models is also obtained. Furthermore, the algebraic structure underlying the quantum models is explored. This turns out to be a nonlinear (quadratic) algebra, which could be applied for the determination of approximate solutions to the eigenvalue equations.

تحميل البحث