Quantum learning and universal quantum matching machine


الملخص بالإنكليزية

Suppose that three kinds of quantum systems are given in some unknown states $ket f^{otimes N}$, $ket{g_1}^{otimes K}$, and $ket{g_2}^{otimes K}$, and we want to decide which textit{template} state $ket{g_1}$ or $ket{g_2}$, each representing the feature of the pattern class ${cal C}_1$ or ${cal C}_2$, respectively, is closest to the input textit{feature} state $ket f$. This is an extension of the pattern matching problem into the quantum domain. Assuming that these states are known a priori to belong to a certain parametric family of pure qubit systems, we derive two kinds of matching strategies. The first is a semiclassical strategy which is obtained by the natural extension of conventional matching strategies and consists of a two-stage procedure: identification (estimation) of the unknown template states to design the classifier (textit{learning} process to train the classifier) and classification of the input system into the appropriate pattern class based on the estimated results. The other is a fully quantum strategy without any intermediate measurement which we might call as the {it universal quantum matching machine}. We present the Bayes optimal solutions for both strategies in the case of K=1, showing that there certainly exists a fully quantum matching procedure which is strictly superior to the straightforward semiclassical extension of the conventional matching strategy based on the learning process.

تحميل البحث