Analysis of band-gap formation in squashed arm-chair CNT


الملخص بالإنكليزية

The electronic properties of squashed arm-chair carbon nanotubes are modeled using constraint free density functional tight binding molecular dynamics simulations. Independent from CNT diameter, squashing path can be divided into {it three} regimes. In the first regime, the nanotube deforms with negligible force. In the second one, there is significantly more resistance to squashing with the force being $sim 40-100$ nN/per CNT unit cell. In the last regime, the CNT looses its hexagonal structure resulting in force drop-off followed by substantial force enhancement upon squashing. We compute the change in band-gap as a function of squashing and our main results are: (i) A band-gap initially opens due to interaction between atoms at the top and bottom sides of CNT. The $pi-$orbital approximation is successful in modeling the band-gap opening at this stage. (ii) In the second regime of squashing, large $pi-sigma$ interaction at the edges becomes important, which can lead to band-gap oscillation. (iii) Contrary to a common perception, nanotubes with broken mirror symmetry can have {it zero} band-gap. (iv) All armchair nanotubes become metallic in the third regime of squashing. Finally, we discuss both differences and similarities obtained from the tight binding and density functional approaches.

تحميل البحث