A statistical analysis of acoustic emission signals for tool condition monitoring (TCM)


الملخص بالإنكليزية

The statistical properties of acoustic emission signals for tool condition monitoring (TCM) applications in mechanical lathe machining are analyzed in this paper. Time series data and root mean square (RMS) values at various tool wear levels are shown to exhibit features that can be put into relation with ageing in both cases. In particular, the histograms of raw data show power-law distributions above a cross-over value, in which newer cutting tools exhibit more numerous larger events compared with more worn-out ones. For practical purposes, statistics based on RMS values are more feasible, and the analysis of these also reveals discriminating age-related features. The assumption that experimental RMS histograms follow a Beta (b) distribution has also been tested. The residuals of the modeling b functions indicate that the search for a more appropriate fitting function for the experimental distribution is desirable.

تحميل البحث