We adress the problem of interactions between the longitudinal velocity increment and the energy dissipation rate in fully developed turbulence. The coupling between these two quantities is experimentally investigated by the theory of stochastic Markovian processes. The so-called Markov analysis allows for a precise characterization of the joint statistical properties of velocity increment and energy dissipation. In particular, it is possible to determine the differential equation that governs the evolution along scales of the joint probability density of these two quantities. The properties of this equation provide interesting new insights into the coupling between energy dissipation and velocity incrementas leading to small scale intermittency.