A transformation of supersymmetric quantum mechanics for N coupled channels is presented, which allows the introduction of up to N degenerate bound states without altering the remaining spectrum of the Hamiltonian. Phase equivalence of the Hamiltonian can be restored by two successive supersymmetric transformations at the same energy. The method is successfully applied to the 3S1-3D1 coupled channels of the nucleon-nucleon system and a set of Moscow-type potentials is thus generated.