Recently, a new technique for measuring short-range NN correlations in nuclei (NN SRCs) was reported by the E850 collaboration, using data from the EVA spectrometer at the AGS at Brookhaven Nat. Lab. In this talk, we will report on a larger set of data from new measurement by the collaboration, utilizing the same technique. This technique is based on a very simple kinematic approach. For quasi-elastic knockout of protons from a nucleus ($^{12}$C(p,2p) was used for the current work), we can reconstruct the momentum {bf p$_f$} of the struck proton in the nucleus before the reaction, from the three momenta of the two detected protons, {bf p$_1$} and {bf p$_2$} and the three momentum of the incident proton, {bf p$_0$} : {bf p$_f$} = {bf p$_1$} + {bf p$_2$} - {bf p$_0$} If there are significant n-p SRCs, then we would expect to find a neutron with momentum -{bf p$_f$} in coincidence with the two protons, provided {bf p$_f$} is larger than the Fermi momentum $k_F$ for the nucleus (${sim}$220 MeV/c for $^{12}$C). Our results reported here confirm the earlier results from the E850 collaboration.