Reaction diffusion systems with Turing instability and mass conservation are studied. In such systems, abrupt decays of stripes follow quasi-stationary states in sequence. At steady state, the distance between stripes is much longer than that estimated by linear stability analysis at a homogeneous state given by alternative stability conditions. We show that there exist systems in which a one-stripe pattern is solely steady state for an arbitrary size of the systems. The applicability to cell biology is discussed.