Solving Fermat-type equations $x^4 + d y^2 = z^p$ via modular Q-curves over polyquadratic fields


الملخص بالإنكليزية

We solve the diophantine equations x^4 + d y^2 = z^p for d=2 and d=3 and any prime p>349 and p>131 respectively. The method consists in generalizing the ideas applied by Frey, Ribet and Wiles in the solution of Fermats Last Theorem, and by Ellenberg in the solution of the equation x^4 + y^2 = z^p, and we use Q-curves, modular forms and inner twists. In principle our method can be applied to solve this type of equations for other values of d.

تحميل البحث