Let $X$ be a complex analytic manifold, $Dsubset X$ a free divisor with jacobian ideal of linear type (e.g. a locally quasi-homogeneous free divisor), $j: U=X-D to X$ the corresponding open inclusion, $E$ an integrable logarithmic connection with respect to $D$ and $L$ the local system of the horizontal sections of $E$ on $U$. In this paper we prove that the canonical morphisms between the logarithmic de Rham complex of $E(kD)$ and $R j_* L$ (resp. the logarithmic de Rham complex of $E(-kD)$ and $j_!L$) are isomorphisms in the derived category of sheaves of complex vector spaces for $kgg 0$ (locally on $X$)