Un indice qui affine lindice de Poincar{e}-Lefschetz pour les hom{e}omorphismes de surfaces


الملخص بالإنكليزية

We study the dynamics of surface homeomorphisms around isolated fixed points whose Poincar{e}-Lefschetz index is not equal to 1. We construct a new conjugacy invariant, which is a cyclic word on the alphabet ${ua, ra, da, la}$. This invariant is a refinement of the P.-L. index. It can be seen as a canonical decomposition of the dynamics into a finite number of sectors of hyperbolic, elliptic or indifferent type. The contribution of each type of sector to the P.-L. index is respectively -1/2, $+1/2$ and 0. The construction of the invariant implies the existence of some canonical dynamical structures.

تحميل البحث