On symmetric random walks with random conductances on $Z^d$


الملخص بالإنكليزية

We study models of continuous time, symmetric, $Z^d$-valued random walks in random environments. One of our aims is to derive estimates on the decay of transition probabilities in a case where a uniform ellipticity assumption is absent. We consider the case of independent conductances with a polynomial tail near 0, and obtain precise asymptotics for the annealed return probability and convergence times for the random walk confined to a finite box.

تحميل البحث