Formulas for the dimensions of some affine Deligne-Lusztig Varieties


الملخص بالإنكليزية

Rapoport and Kottwitz defined the affine Deligne-Lusztig varieties $X_{tilde{w}}^P(bsigma)$ of a quasisplit connected reductive group $G$ over $F = mathbb{F}_q((t))$ for a parahoric subgroup $P$. They asked which pairs $(b, tilde{w})$ give non-empty varieties, and in these cases what dimensions do these varieties have. This paper answers these questions for $P=I$ an Iwahori subgroup, in the cases $b=1$, $G=SL_2$, $SL_3$, $Sp_4$. This information is used to get a formula for the dimensions of the $X_{tilde{w}}^K(sigma)$ (all shown to be non-empty by Rapoport and Kottwitz) for the above $G$ that supports a general conjecture of Rapoport. Here $K$ is a special maximal compact subgroup.

تحميل البحث