A unified approach to improved L^p Hardy inequalities with best constants


الملخص بالإنكليزية

We present a unified approach to improved $L^p$ Hardy inequalities in $R^N$. We consider Hardy potentials that involve either the distance from a point, or the distance from the boundary, or even the intermediate case where distance is taken from a surface of codimension $1<k<N$. In our main result we add to the right hand side of the classical Hardy inequality, a weighted $L^p$ norm with optimal weight and best constant. We also prove non-homogeneous improved Hardy inequalities, where the right hand side involves weighted L^q norms, q eq p.

تحميل البحث