In the classical Lagrangian approach to conservation laws of gauge-natural field theories a suitable (vector) density is known to generate the so--called {em conserved Noether currents}. It turns out that along any section of the relevant gauge--natural bundle this density is the divergence of a skew--symmetric (tensor) density, which is called a {em superpotential} for the conserved currents. We describe gauge--natural superpotentials in the framework of finite order variational sequences according to Krupka. We refer to previous results of ours on {em variational Lie derivatives} concerning abstra