Bianchi type I and type IX (Mixmaster) geometries are investigated within the framework of Hov{r}ava-Witten cosmology. We consider the models for which the fifth coordinate is a $S^1/Z_2$ orbifold while the four coordinates are such that the 3-space is homogeneous and has geometry of Bianchi type I or IX while the rest six dimensions have already been compactified on a Calabi-Yau space. In particular, we study Kasner-type solutions of the Bianchi I field equations and discuss Kasner asymptotics of Bianchi IX field equations. We are able to recover the isotropic 3-space solutions found by Lukas {it et al}. Finally, we discuss if such Bianchi IX configuration can result in chaotic behaviour of these Hov{r}ava-Witten cosmologies.