We have found that supersymmetry (SUSY) in curved space is broken softly. It is also found that Pauli-Villars regularization preserves the remaining symmetry, softly broken SUSY. Using it we computed the one-loop effective potential along a (classical) flat direction in a Wess-Zumino model in de Sitter space. The analysis is relevant to the Affleck-Dine mechanism for baryogenesis. The effective potential is unbounded from below: $V_{eff}(phi)to -3g^2H^2phi ^2 ln phi ^2 /16pi ^2$, where $phi$ is the scalar field along the flat direction, g is a typical coupling constant, and H is the Hubble parameter. This is identical with the effective potential which is obtained by using proper-time cutoff regularization. Since proper-time cutoff regularization is exact even at the large curvature region, the effective potential possesses softly broken SUSY and reliability in the large curvature region.