The quantisation of the Wess-Zumino-Witten model on a circle is discussed in the case of $SU(N)$ at level $k$. The quantum commutation of the chiral vertex operators is described by an exchange relation with a braiding matrix, $Q$. Using quantum consistency conditions, the braiding matrix is found explicitly in the fundamental representation. This matrix is shown to be related to the Racah matrix for $U_t(SL(N))$. From calculating the four-point functions with the Knizhnik-Zamolodchikov equations, the deformation parameter $t$ is shown to be $t=exp({ipi /(k+N)})$ when the level $kge 2$. For $k=1$, there are two possible types of braiding, $t=exp({ipi /(1+N)})$ or $t=exp(ipi)$. In the latter case, the chiral vertex operators are constructed explicitly by extending the free field realisation a la Frenkel-Kac and Segal. This construction gives an explicit description of how to chirally factorise the $SU(N)_{k=1}$ WZW model.