Strebel differentials are a special class of quadratic differentials with several applications in string theory. In this note we show that finding Strebel differentials with integral lengths is equivalent to finding generalized Argyres-Douglas singularities in the Coulomb moduli space of a U(N) $N=2$ gauge theory with massive flavours. Using this relation, we find an efficient technique to solve the problem of factorizing the Seiberg-Witten curve at the Argyres-Douglas singularity. We also comment upon a relation between more general Seiberg-Witten curves and Belyi maps.