The 1/Nc expansion is formulated for the baryon wave function in terms of a specially constructed generating functional. The leading order of this 1/Nc expansion is universal for all low-lying baryons [including the O(1/Nc) and O(Nc^0) excited resonances] and for baryon-meson scattering states. A nonlinear evolution equation of Hamilton-Jacobi type is derived for the generating functional describing the baryon distribution amplitude in the large-Nc limit. In the asymptotic regime this nonlinear equation is solved analytically. The anomalous dimensions of the leading-twist baryon operators diagonalizing the evolution are computed analytically up to the next-to-leading order of the 1/Nc expansion.