We review the basic results concerning the structure of effective action in N=4 supersymmetric Yang-Mills theory in Coulomb phase. Various classical formulations of this theory are considered. We show that the low-energy effective action depending on all fileds of N=4 vector multiplet can be exactly found. This result is discussed on the base of algebraic analysis exploring the general harmonic superspace techniques and on the base of straightforward quantum field theory calculations using the N=2 supersymmetric background field method. We study the one-loop effective action beyond leading low-energy approximation and construct supersymmetric generalization of Heisenberg-Euler-Schwinger effective action depending on all fields of N=4 vector multiplet. We also consider the derivation of leading low-enrgy effective action at two loops.