Resummation of Large Endpoint Corrections to Color-Octet J/psi Photoproduction


الملخص بالإنكليزية

An unresolved problem in J/psi phenomenology is a systematic understanding of the differential photoproduction cross section, dsigma/dz [gamma + p -> J/psi + X], where z= E_psi/E_gamma in the proton rest frame. In the non-relativistic QCD (NRQCD) factorization formalism, fixed-order perturbative calculations of color-octet mechanisms suffer from large perturbative and nonperturbative corrections that grow rapidly in the endpoint region, z -> 1. In this paper, NRQCD and soft collinear effective theory are combined to resum these large corrections to the color-octet photoproduction cross section. We derive a factorization theorem for the endpoint differential cross section involving the parton distribution function and the color-octet J/psi shape functions. A one loop matching calculation explicitly confirms our factorization theorem at next-to-leading order. Large perturbative corrections are resummed using the renormalization group. The calculation of the color-octet contribution to dsigma/dz is in qualitative agreement with data. Quantitative tests of the universality of color-octet matrix elements require improved knowledge of shape functions entering these calculations as well as resummation of the color-singlet contribution which accounts for much of the total cross section and also peaks near the endpoint.

تحميل البحث