Electroweak baryogenesis and primordial hypermagnetic fields


الملخص بالإنكليزية

The origin of the matter-antimatter asymmetry of the universe remains one of the outstanding questions yet to be answered by modern cosmology and also one of only a handful of problems where the need of a larger number of degrees of freedom than those contained in the standard model (SM) is better illustrated. An appealing scenario for the generation of baryon number is the electroweak phase transition that took place when the temperature of the universe was about 100 GeV. Though in the minimal version of the SM, and without considering the interaction of the SM particles with additional degrees of freedom, this scenario has been ruled out given the current bounds for the Higgs mass, this still remains an open possibility in supersymmetric extensions of the SM. In recent years it has also been realized that large scale magnetic fields could be of primordial origin. A natural question is what effect, if any, these fields could have played during the electroweak phase transition in connection to the generation of baryon number. Prior to the electroweak symmetry breaking, the magnetic modes able to propagate for large distances belonged to the U(1) group of hypercharge and hence receive the name of hypermagnetic fields. In this contribution, we summarize recent work aimed to explore the effects that these fields could have introduced during a first order electroweak phase transition. In particular, we show how these fields induce a CP asymmetric scattering of fermions off the true vacuum bubbles nucleated during the phase transition. The segregated axial charge acts as a seed for the generation of baryon number. We conclude by mentioning possible research venues to further explore the effects of large scale magnetic fields for the generation of the baryon asymmetry.

تحميل البحث