It is shown that the dynamical evolution of linear perturbations on a static space-time is governed by a constrained wave equation for the extrinsic curvature tensor. The spatial part of the wave operator is manifestly elliptic and self-adjoint. In contrast to metric formulations, the curvature-based approach to gravitational perturbation theory generalizes in a natural way to self-gravitating matter fields. It is also demonstrated how to obtain symmetric pulsation equations for self-gravitating non-Abelian gauge fields, Higgs fields and perfect fluids. For vacuum fluctuations on a vacuum space-time, the Regge-Wheeler and Zerilli equations are rederived.