Spin diffusion in doped semiconductors


الملخص بالإنكليزية

The behavior of spin diffusion in doped semiconductors is shown to be qualitatively different than in undoped (intrinsic) ones. Whereas a spin packet in an intrinsic semiconductor must be a multiple-band disturbance, involving inhomogeneous distributions of both electrons and holes, in a doped semiconductor a single-band disturbance is possible. For n-doped nonmagnetic semiconductors the enhancement of diffusion due to a degenerate electron sea in the conduction band is much larger for these single-band spin packets than for charge packets, and can exceed an order of magnitude at low temperatures even for equilibrium dopings as small as 10^16 cm^-3. In n-doped ferromagnetic and semimagnetic semiconductors the motion of spin packets polarized antiparallel to the equilibrium carrier spin polarization is predicted to be an order of magnitude faster than for parallel polarized spin packets. These results are reversed for p-doped semiconductors.

تحميل البحث