Electron tunneling experiments are used to probe Coulomb correlation effects in the single-particle density-of-states (DOS) of boron-doped silicon crystals near the critical density of the metal-insulator transition (MIT). At low energies, a DOS measurement distinguishes between insulating and metallic samples with densities 10 to 15 % on either side of the MIT. However, at higher energies the DOS of both insulators and metals show a common behavior, increasing roughly as the square-root of energy. The observed characteristics of the DOS can be understood using a classical treatment of Coulomb interactions combined with a phenomenological scaling ansatz to describe the length-scale dependence of the dielectric constant as the MIT is approached from the insulating side.