Finitely Correlated Generalized Spin Ladders


الملخص بالإنكليزية

We study two-leg S=1/2 ladders with general isotropic exchange interactions between spins on neighboring rungs, whose ground state can be found exactly in a form of finitely correlated (matrix product) wave function. Two families of models admitting an exact solution are found: one yields translationally invariant ground states and the other describes spontaneously dimerized models with twofold degenerate ground state. Several known models with exact ground states can be obtained as particular cases from the general solution of the first family, which includes also a set of models with only bilinear interactions. Those two families of models have nonzero intersection, which enables us to determine exactly the phase boundary of the second-order transition into the dimerized phase and to study the properties of this transition. The structure of elementary excitations in the dimerized phase is discussed on the basis of a variational ansatz. For a particular class of models, we present exact wave functions of the elementary excitations becoming gapless at second-order transition lines. We also propose a generalization of the Bose-Gayen ladder model which has a rich phase diagram with all phase boundaries being exact.

تحميل البحث