Edge-Magnetoplasmon Wave-Packet Revivals in the Quantum Hall Effect


الملخص بالإنكليزية

The quantum Hall effect is necessarily accompanied by low-energy excitations localized at the edge of a two-dimensional electron system. For the case of electrons interacting via the long-range Coulomb interaction, these excitations are edge magnetoplasmons. We address the time evolution of localized edge-magnetoplasmon wave packets. On short times the wave packets move along the edge with classical E cross B drift. We show that on longer times the wave packets can have properties similar to those of the Rydberg wave packets that are produced in atoms using short-pulsed lasers. In particular, we show that edge-magnetoplasmon wave packets can exhibit periodic revivals in which a dispersed wave packet reassembles into a localized one. We propose the study of edge-magnetoplasmon wave packets as a tool to investigate dynamical properties of integer and fractional quantum-Hall edges. Various scenarios are discussed for preparing the initial wave packet and for detecting it at a later time. We comment on the importance of magnetoplasmon-phonon coupling and on quantum and thermal fluctuations.

تحميل البحث