We investigate the combined effects of electrostatic interactions and hydrodynamic interactions on the short-time rotational self-diffusion coefficient in charge-stabilized suspensions. We calculate this coefficient as a function of volume fraction for various effective particle charges and amounts of added electrolyte. The influence of the hydrodynamic interactions on the rotational diffusion coefficient is less pronounced for charged particles than for uncharged ones. Salt-free suspensions are weakly influenced by hydrodynamic interactions. For these strongly correlated systems we obtain a quadratic volume fraction-dependence of the diffusion coefficient, which is well explained in terms of an effective hard sphere model.