Driven polymer translocation through a nanopore: a manifestation of anomalous diffusion


الملخص بالإنكليزية

We study the translocation dynamics of a polymer chain threaded through a nanopore by an external force. By means of diverse methods (scaling arguments, fractional calculus and Monte Carlo simulation) we show that the relevant dynamic variable, the translocated number of segments $s(t)$, displays an {em anomalous} diffusive behavior even in the {em presence} of an external force. The anomalous dynamics of the translocation process is governed by the same universal exponent $alpha = 2/(2 u +2 - gamma_1)$, where $ u$ is the Flory exponent and $gamma_1$ - the surface exponent, which was established recently for the case of non-driven polymer chain threading through a nanopore. A closed analytic expression for the probability distribution function $W(s, t)$, which follows from the relevant {em fractional} Fokker - Planck equation, is derived in terms of the polymer chain length $N$ and the applied drag force $f$. It is found that the average translocation time scales as $tau propto f^{-1}N^{frac{2}{alpha} -1}$. Also the corresponding time dependent statistical moments, $< s(t) > propto t^{alpha}$ and $< s(t)^2 > propto t^{2alpha}$ reveal unambiguously the anomalous nature of the translocation dynamics and permit direct measurement of $alpha$ in experiments. These findings are tested and found to be in perfect agreement with extensive Monte Carlo (MC) simulations.

تحميل البحث