In- and out-of-plane optical spectra and specific heat measurements for the single layer cuprate superconductor Hg-1201 at optimal doping (Tc = 97 K) are presented. Both the in-plane and out-of-plane superfluid density agree well with a recently proposed scaling relation rho_{s}=sigma_{dc}T_{c}. It is shown that there is a superconductivity induced increase of the in-plane low frequency spectral weight which follows the trend found in underdoped and optimally doped Bi-2212 and optimally doped Bi-2223. We observe an increase of optical spectral weight which corresponds to a change in kinetic energy of approximately 0.5 meV/Cu which is more than enough to explain the condensation energy. The specific heat anomaly is 10 times smaller than in YBCO and 3 times smaller than in Bi-2212. The shape of the anomaly is similar to the one observed in YBCO showing that the superconducting transition is governed by thermal fluctuations.