We show that the concept of topological order, introduced to describe ordered quantum systems which cannot be classified by broken symmetries, also applies to classical systems. Starting from a specific example, we show how to use pure state density matrices to construct corresponding thermally mixed ones that retain precisely half the original topological entropy, a result that we generalize to a whole class of quantum systems. Finally, we suggest that topological order and topological entropy may be useful in characterizing classical glassy systems.