NMR Evidence for Gapped Spin Excitations in Metallic Carbon Nanotubes


الملخص بالإنكليزية

We report on the spin dynamics of 13C isotope enriched inner-walls in double-wall carbon nanotubes (DWCNT) using 13C nuclear magnetic resonance (NMR). Contrary to expectations, we find that our data set implies that the spin-lattice relaxation time (T1) has the same temperature (T) and magnetic field (H) dependence for most of the innerwall nanotubes detected by NMR. In the high temperature regime (T > 150 K), we find that the T and H dependence of 1/T1T is consistent with a 1D metallic chain. For T < 150 K, we find a significant increase in 1/T1T with decreasing T, followed by a sharp drop below 20 K. The data clearly indicates the formation of a gap in the spin excitation spectrum, where the gap value 2 Delta = 40 K (= 3.7 meV) is H independent.

تحميل البحث