Effect of transient change in strain rate on plastic flow behavior of low carbon steel


الملخص بالإنكليزية

Plastic flow behavior of low carbon steel has been studied at room temperature during tensile deformation by varying the initial strain rate of 3.3x10e-4 1/sec to the final strain rate ranging from 1.33x10e-3 1/sec to 2.0x10e-3 1/sec at a fixed engineering strain of 12%. Haasen plot revealed that the mobile dislocation density remained almost invariant at the juncture where there was a sudden increase in stress with the change in strain rate and the plastic flow was solely dependent on the velocity of mobile dislocations. In that critical regime, the variation of stress with time was fitted with a Boltzman type Sigmoid function. The increase in stress was found to increase with final strain rate and the time elapsed to attain these stress values showed a decreasing trend. Both of these parameters saturated asymptotically at higher final strain rate.

تحميل البحث