Bose-Einstein condensation of chromium


الملخص بالإنكليزية

We report on the generation of a Bose-Einstein condensate in a gas of chromium atoms, which will make studies of the effects of anisotropic long-range interactions in degenerate quantum gases possible. The preparation of the chromium condensate requires novel cooling strategies that are adapted to its special electronic and magnetic properties. The final step to reach quantum degeneracy is forced evaporative cooling of 52Cr atoms within a crossed optical dipole trap. At a critical temperature of T~700nK, we observe Bose-Einstein condensation by the appearance of a two-component velocity distribution. Released from an anisotropic trap, the condensate expands with an inversion of the aspect ratio. We observe critical behavior of the condensate fraction as a function of temperature and more than 50,000 condensed 52Cr atoms.

تحميل البحث